







**CO: University POLITEHNICA of Bucharest** 

P1: INCDIE ICPE-CA

**P2: Smart Mechanics SRL** 

## Hydrokinetic eco - Power System for ultra low head water streams HyPER Workshop

RESEARCH PROJECT no. 478 PED/2020, Project code: PN-III-P2-2.1-PED-2019-3247 (UEFISCDI)

POJECT MANGEMENT: Diana Maria BUCUR (CO - UPB), Florentina BUNEA (P1 - ICPE-CA), Ion FUIOREA (P2 - SM)

**RESEARCH AREA: Energy, environment and climate changes** 

## **PROJECT OBJECTIVE**

This project proposes a power energy technology that will generate power by using the kinetic energy of ultra-low head water streams, without damaging the existing ecosystem. The technical concept of HyPER is based on the combination of the classical elements: hydraulic turbine and permanent magnets generator, with a positive environmental impact, studied in a novel, compact assembly. The developed experimental model consisting in: hydrokinetic turbine with a shrouded axial runner, shaftless-coupled in the same casing with a permanent magnets generator and equipped with a flow mixing diffuser is tested in laboratory conditions to validate the technology.



HyPER system conceptual model
1 – shrouded turbine runner,
2 – permanent magnets ring rotor, 3 – stator winding,
4 – casing, 5 – flow mixing diffuser.

## **PROJECT ACTIVITIES**

**Stage 1** –Design and optimization of the HyPER experimental model (hydrokinetic turbine, flow mixing diffuser and permanent magnets generator) using numerical simulations.

**Stage 2** – Manufacture (3D printing) of the HyPER experimental model of (hydrokinetic turbine, flow mixing diffuser and permanent magnets generator)

Stage 3 - Validation in laboratory environment of the HyPER energy production technology.



Numerical design of the turbine runner



Laboratory experimental set-up



Flow simulation analysis



Structural analysis (FEA)



Magnetic induction simulation



Experimental test of the turbine runner



Laboratory validation of the HyPER technology

21th of October 2022

## **University POLITHNICA of Bucharest (Room Ela 217b)**

ACKNOWLEDGMENT: This work is supported by a grant of the Romanian Ministry of Education and Research, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2019-3247, within PNCDI